

Ref: 02343-05001-32003

January 31, 2006

Dr. Richard Mani 8 Pelican Point Road Belvedere, CA 94920

Re: Quarterly Groundwater Monitoring Report – Third Quarter 2005 and Semi-Annual

Biosparge System Update, Mani Site, 200 Talmadge Drive, Santa Rosa, California,

NCRWQCB Case No. 1TSR279

Dear Dr. Mani:

This report presents Winzler & Kelly Consulting Engineers' (Winzler & Kelly's) results of the biosparge system operation and the groundwater monitoring and sampling performed on September 28 and 29, 2005, for the site located at 200 Talmadge Drive, Santa Rosa, California (Figures 1 and 2).

THIRD QUARTER GROUNDWATER MONITORING AND SAMPLING ACTIVITIES

The Site-Specific Sampling Procedures, provided in Appendix A, describe in detail all of the monitoring and sampling activities that were performed at the site on September 28 and 29, 2005. A brief summary of these activities is also provided below.

FIELD ACTIVITIES

Personnel Present: Winzler & Kelly's technicians, Pon Xayasaeng and Trevor White performed

all the groundwater monitoring and sampling activities.

Dissolved Oxygen: On September 28, 2005, dissolved oxygen (DO) concentrations were

measured in each monitoring well at the site. The measurements were obtained using a calibrated DO meter while the biosparge system was

operating.

Biosparge Shutdown: On September 28, 2005, the biosparge system was shutdown after DO

measurements had been obtained to allow groundwater levels to equilibrate.

Depth-to-Water: On September 28, 2005, the depth-to-groundwater (DTW) was measured in

each monitoring well while the biosparge system was operating. DTW was measured again on September 29, 2005, while the biosparge system was turned off and groundwater levels had equilibrated to atmospheric pressure for at least 30 minutes. The measurements were obtained using an electronic

water level meter.

Purging: On September 29, 2005, an electronic 12-volt 1.5-inch submersible pump

was used to purge each monitoring well at the site. A copy of each well

sampling data sheet is provided in Appendix B.

Groundwater Sampling: On September 29, 2005, groundwater samples were collected from each

monitoring well at the site. New disposable bailers were used to collect and transfer the groundwater samples from each monitoring well into the appropriate, laboratory-supplied, certified clean sample containers.

Chemical Analysis: Analytical Sciences Laboratory (Analytical Sciences) of Petaluma,

California (a California-certified laboratory) analyzed the groundwater samples for TPH-G and total petroleum hydrocarbons as diesel (TPH-D) by EPA Test Method 8015M, for benzene, toluene, ethyl benzene, and total xylenes (BTEX) and oxygenated fuel additives by EPA Test Method 8260B, for Nitrite as Nitrogen, Nitrate as Nitrogen, and Phosphate by EPA Test Method 300, and for Ammonia as Nitrogen by EPA Test Method 350.3.

GROUNDWATER MONITORING AND SAMPLING RESULTS

The groundwater elevation data and groundwater flow direction are presented in Tables 1 and 2. A groundwater contour map illustrating the groundwater elevation contours at the site on September 29, 2005, is provided as Figure 3. As shown on Figure 3, the groundwater at the site was flowing towards the southwest at a gradient of 0.01 ft/ft.

The DO concentrations measured on September 28, 2005, indicate that the biosparge system is effectively introducing oxygen into the aquifer downgradient of the former underground storage tanks (USTs). The DO results are summarized in Table 3. The only exceptions to this are monitoring wells MW-4 and MW-5, where DO concentrations are low during this sampling event. However, TPH-G and methyl tert-butyl ether (MTBE) concentrations have significantly decreased.

Nutrient monitoring has been conducted on a quarterly basis since the first nutrient injection performed on September 22, 2004. During the first nutrient injection, 9 pounds (lbs) of Nitrate as Nitrogen was injected into biosparge points SP-3, SP-4, and SP-5. The purpose of the nutrient injections is to increase intrinsic aerobic biodegradation, which then decreases the cleanup time. Nutrient monitoring is completed to observing changes in nutrient concentrations and biodegradation activity. Due to low concentrations of nutrients observed during the June 13, 2005 sampling event, the second nutrient injection was performed, on July 21, 2005. Approximately 15 lbs of Nitrate as Nitrogen was injected into biosparge points SP-2, SP-3, SP-4, and SP-5. On August 12, 2005, concentrations of Nitrate and Nitrite as Nitrogen were monitored in each well using a field test strip kit. Nitrate as Nitrogen concentrations were low and ranged from 0.0 to 2.0 mg/L. Nitrite as Nitrogen concentrations were 0.0 mg/L for all the monitoring wells.

Analytical results of nutrients from the September 29, 2005 groundwater samples also indicated low concentrations of Nitrate as Nitrogen in the monitoring wells at the site. Nitrite as Nitrogen, Ammonia as Nitrogen, and Phosphate were not detected in any of the groundwater samples. The results are summarized in Table 4.

The low concentrations of nutrients indicate that additional nutrient injections are needed in order to speed up the remediation. Winzler & Kelly will conduct the third nutrient injection in December 2005 in biosparge points SP-2 through SP-5. Following the nutrient injection, Nitrate as Nitrogen, Nitrite as Nitrogen, Ammonia as Nitrogen, and Phosphate will be analyzed during the fourth quarter 2005 monitoring and sampling event to ensure concentrations are below and maintain to be below the maximum contaminant levels for nutrients.

Consistent with historical analytical results, petroleum related constituents were quantified above the laboratory's reportable detection limits (RDLs) in groundwater samples collected from MW-1 and MW-5 on September 29, 2005. During this sampling event, the TPH-G concentration of 200 μ g/L in MW-5 is similar to previous sampling events. MW-5 is located on the outer limits of the biosparge points radius of influence; therefore, aerobic biodegradation is slower near MW-5 than monitoring wells that are within the biosparge points radius of influence. The TPH-G concentration of 280 μ g/L in MW-1 (located within the biosparge points radius of influence) has significantly decreased since the previous sampling event and is the lowest concentration in this well to date. In addition, the TPH-G concentration in MW-4 has reduced to the Regional Water Board's Water Quality Objectives. Reduction of TPH-G concentrations in monitoring wells MW-1 and MW-4 (within the biosparge points radius of influence) indicate that aerobic biodegradation has considerably increased with the increase of air flow to the aquifer combined with the injection of nutrients.

Laboratory analysis of the groundwater samples collected on September 29, 2005, from monitoring wells MW-2 and MW-6 did not quantify any petroleum related hydrocarbons above the laboratory's RDLs, except for low concentrations of total xylenes at $1.2~\mu g/L$ in MW-2. Monitoring wells MW-2 and MW-6 are located upgradient and crossgradient of the former USTs, respectively. The level of total xylenes in MW-2 are inconsistent and detected only twice; therefore does not appear to be a concern, but monitoring will continue. The analytical results are summarized in Table 5. A summary of the analytical results of TPH-G, benzene, and MTBE on September 29, 2005, is also provided on Figure 4.

The laboratory QA/QC included the use of method blanks to exclude false-positive analyses and the use of laboratory control samples to evaluate the percentage recovery of known analyte spikes. The recovery percentages for all of the sample analytes were within acceptable ranges. Contaminants of concern were not detected in the analysis of the trip blank. The complete laboratory report, QA/QC data, and the chain-of-custody form are included in Appendix C.

BIOSPARGE SYSTEM OPERATION

A brief summary of the biosparge system operation and maintenance activities is provided below.

• On March 1, 2005, the air flow rate was increased to 6.0 SCFM due to continual low DO concentrations.

• On July 21, 2005, the biosparge system was shutdown to replace the old compressor (2-CIL-1) with a new compressor (3-CIL-1) to meet the increased demand of air flow rate (6.0 SCFM). In addition, the second nutrient injection was completed at the same time.

The new compressor is able to maintain the air flow rate demand of 6.0 SCFM needed to increase aerobic biodegradation at the site, while the old compressor could not. With the air flow rate set at 6.0 SCFM, the biosparge points radius of influence has increased. Operation and maintenance data is presented on Table 6. Analytical results from the past three sampling events show concentrations of total petroleum hydrocarbons as gasoline (TPH-G) significantly decreasing in monitoring wells MW-1 and MW-4, which are within the biosparge points radius of influence.

GEOTRACKER DATA ENTRY

As required by Assembly Bill AB2886, Winzler & Kelly has submitted the well measurement file for the September 29, 2005 groundwater sampling event to the GeoTracker database. Copies of the submittal verifications are included in Appendix D. Winzler & Kelly will submit the analytical data and this report to the GeoTracker database upon receipt of the EDF report from Analytical Sciences and upon completion of this report.

RECOMMENDATIONS

Winzler & Kelly will continue to perform quarterly groundwater monitoring, nutrient injection, and sampling activities at the site. The fourth quarter 2005 monitoring and sampling event was conducted in December 2005 and the fourth quarter 2005 monitoring report will be submitted following this report. The first quarter 2006 monitoring and sampling event is scheduled for March 2006.

Should you have any questions or comments regarding this project, please contact Ms. Elizabeth Cargay, Project Manager, at (707) 523-1010.

Sincerely,

WINZLER & KELLY

Pon Xayasaeng

Environmental Engineer

Kent O'Brien, PG, CEG Senior Project Geologist

sc

Attachments

Attachments

Figures:

Figure 1 – Vicinity Map

Figure 2 – Site Map

Figure 3 – Groundwater Contour Map

Figure 4 – Petroleum Hydrocarbon Concentrations in Groundwater

Tables:

Table 1 – Water Level Data and Well Construction Details

Table 2 – Groundwater Gradient and Flow Direction

Table 3 – Dissolved Oxygen and Indicator Parameters

Table 4 – Analytical Results of Nutrient Compounds

Table 5 – Analytical Results of Groundwater Samples

Table 6 – Operation and Maintenance Data

Appendices:

Appendix A – Site-Specific Sampling Procedures

Appendix B – Well Sampling Data Sheets

Appendix C – Analytical Laboratory Report

Appendix D – GeoTracker Upload Verification

c: Mr. Jim Tischler, North Coast Regional Water Quality Control Board, 5550 Skylane Boulevard, Suite A, Santa Rosa, CA 95403

Mr. Don Wehr, 1839 Bella Vista Avenue, Santa Rosa, CA 95403

Table 1. Water Level Data and Well Construction Details

Mani Site

Well ID	Date	Groundwate (Mean So	ea Level)	Depth-to	o-Water System Off	Top of Casing Elevation (Mean Sea Level)	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite/ Grout Interval
MW-1	2/2/1995	NM	110.41	NM	8.25	118.66		10.0-25.0	8.0-25.0	6.0-8.0
141 44 - 1	3/19/1998	NM	111.51	NM	7.15	110.00		10.0-23.0	0.0-23.0	0.0-0.0
	9/9/1999	NM	106.31	NM	12.35		_			
	10/11/1999	NM	105.65	NM	13.01		_			
	11/17/1999	NM	105.24	NM	13.42		0.00			
	12/15/1999	NM	105.08	NM	13.58		0.00			
	1/12/2000	NM	104.77	NM	13.89		0.00			
	2/10/2000	NM	106.70	NM	11.96		0.00			
	3/15/2000	NM	111.09	NM	7.57		0.00			
	4/13/2000	NM	109.87	NM	8.79		0.00			
	5/12/2000	NM	109.41	NM	9.25		0.00			
	6/15/2000	NM	108.39	NM	10.27		0.00			
	7/14/2000	NM	107.24	NM	11.42	118.69	0.00			
	3/6/2001 6/6/2001	NM NM	108.06	NM NM	10.63	118.09	0.00			
	9/12/2001	NM NM	106.70 104.58	NM NM	11.99 14.11		0.00			
	12/13/2001	NM	104.38	NM	12.41		0.00			
	3/21/2002	NM	110.54	NM	8.15		0.00			
	6/14/2002	NM	108.09	NM	10.60		NM			
	9/10/2002	NM	105.69	NM	13.00		NM			
	12/11/2002	NM	104.81	NM	13.88		NM			
	3/25/2003	NM	109.76	NM	8.93		NM			
	6/27/2003	NM	109.07	NM	9.62		NM			
	10/1/2003	NM	106.05	NM	12.64		NM			
	12/12/2003	NM	106.24	NM	12.45		NM			
	3/26/2004	NM	110.34	NM	8.35		NM			
	7/9/2004	NM	107.43	NM	11.26		NM			
	9/21/2004	NM	105.63	NM	13.06		NM			
	12/20/04 & 12/21/04	106.15	106.09	12.54	12.60		NM			
	3/16/05 & 3/17/05	110.60	110.58	8.09	8.11		NM			
	6/9/05 & 6/13/05	110.69	110.54	8.00	8.15		NM			
-	9/28/05 & 9/29/05	106.88	107.44	11.81	11.25		NM			
MW-2	2/2/1995	NM	111.08	NM	9.27	120.35		10.0-25.0	8.0-25.0	6.0-8.0
1V1 VV -2	3/19/1998	NM	112.08	NM	8.27	120.33	-	10.0-23.0	8.0-23.0	0.0-8.0
	9/9/1999	NM	106.72	NM	13.63		_			
	10/11/1999	NM	106.04	NM	14.31		_			
	11/17/1999	NM	105.59	NM	14.76		0.00			
	12/15/1999	NM	105.37	NM	14.98		0.00			
	1/12/2000	NM	105.04	NM	15.31		0.00			
	2/10/2000	NM	107.00	NM	13.35		0.00			
	3/15/2000	NM	111.39	NM	8.96		0.00			
	4/13/2000	NM	110.24	NM	10.11		0.00			
	5/12/2000	NM	109.80	NM	10.55		0.00			
	6/15/2000	NM	108.78	NM	11.57		0.00			
	7/14/2000	NM	107.64	NM	12.71	120.27	0.00			
	3/6/2001	NM	108.33	NM	12.04	120.37	0.00			
	6/6/2001	NM NM	107.05	NM NM	13.32		0.00			
	9/12/2001	NM NM	104.89 106.54	NM NM	15.48		0.00			
	12/13/2001 3/21/2002	NM NM			13.83 9.57		0.00			
	6/14/2002	NM NM	110.80 108.45	NM NM	9.57		NM			
	9/10/2002	NM	106.43	NM	14.30		NM			
	12/11/2002	NM	105.11	NM	15.26		NM			
	3/25/2003	NM	110.10	NM	10.27		NM			
	6/27/2003	NM	109.55	NM	10.82		NM			
	10/1/2003	NM	106.47	NM	13.90		NM			
	12/12/2003	NM	106.62	NM	13.75		NM			
	3/26/2004	NM	110.68	NM	9.69		NM			
	7/9/2004	NM	107.89	NM	12.48		NM			
	9/21/2004	NM	106.04	NM	14.33		NM			
	12/20/04 & 12/21/04	106.49	106.40	13.88	13.97		NM			
	3/16/05 & 3/17/05	110.92	110.89	9.45	9.48		NM			
	6/9/05 & 6/13/05	111.07	110.98	9.30	9.39		NM			
	9/28/05 & 9/29/05	107.97	107.91	12.40	12.46		NM			

Table 1. Water Level Data and Well Construction Details

Mani Site

Well ID	Date	Groundwate (Mean Se	ea Level)	Depth-to		Top of Casing Elevation (Mean Sea Level)	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite/ Grout Interval
<u> </u>		System On		System On	System Off				et	_
MW-3	2/2/1995		110.52		9.47	119.99	-	10.0-25.0	8.0-25.0	6.0-8.0
	3/19/1998		111.41		8.58		-			
	9/9/1999		106.57		13.42		-			
	10/11/1999		105.89		14.10		- 0.00			
	11/17/1999 12/15/1999		105.46 105.25		14.53 14.74		0.00			
	1/12/2000		103.23		15.04		0.00			
	2/10/2000		106.88		13.11		0.00			
	3/15/2000		111.30		8.69		0.00			
	4/13/2000		110.12		9.87		0.00			
	5/12/2000		109.66		10.33		0.00			
	6/15/2000		108.64		11.35		0.00			
	7/14/2000		107.49		12.50		0.00			
	3/6/2001		108.24		11.77	120.01	0.00			
	6/6/2001		106.93		13.08		0.00			
	9/12/2001		104.79		15.22		0.00			
	12/13/2001		106.42		13.59		0.00			
	1/24/2002	MW-3 Destro	yed							
3.4337 4	2/21/2022	NTN#	110.00	NTA #	7.00	117.02	NTN #	50.200	40.200	2040
MW-4	3/21/2002 6/14/2002	NM NM	110.02 107.27	NM NM	7.90 10.65	117.92	NM NM	5.0-20.0	4.0-20.0	3.0-4.0
	9/10/2002	NM	107.27	NM	13.11		NM			
	12/11/2002	NM	104.01	NM	13.11		NM			
	3/25/2003	NM	104.01	NM	8.76		NM			
	6/27/2003	NM	108.22	NM	9.70		NM			
	10/1/2003	NM	105.17	NM	12.75		NM			
	12/12/2003	NM	105.36	NM	12.75		NM			
	3/26/2004	NM	109.72	NM	8.20		NM			
	7/9/2004	NM	106.54	NM	11.38		NM			
	9/21/2004	NM	104.81	NM	13.11		NM			
	12/20/04 & 12/21/04	105.52	105.47	12.40	12.45		NM			
	3/16/05 & 3/17/05	110.06	110.07	7.86	7.85		NM			
	6/9/05 & 6/13/05	110.08	110.01	7.84	7.91		NM			
	9/28/05 & 9/29/05	107.10	106.80	10.82	11.12		NM			
MW-5	3/21/2002	NM	109.42	NM	8.21	117.63	NM	5.0-20.0	4.0-20.0	3.0-4.0
	6/14/2002	NM	106.53	NM	11.10		NM			
	9/10/2002	NM	103.99	NM	13.64		NM			
	12/11/2002	NM	103.21	NM	14.42		NM			
	3/25/2003	NM	108.53	NM	9.10		NM			
	6/27/2003	NM	107.40	NM	10.23		NM			
	10/1/2003	NM	104.40	NM	13.23		NM			
	12/12/2003	NM	104.65	NM	12.98		NM			
	3/26/2004	NM	109.11	NM	8.52		NM			
	7/9/2004	NM NM	105.89	NM NM	11.74		NM			
	9/21/2004	NM 104.97	104.08 104.90	NM 12.66	13.55		NM NM			
	12/20/04 & 12/21/04 3/16/05 & 3/17/05	104.97 109.59	104.90	12.66 8.04	12.73 8.05		NM NM			
ĺ	6/9/05 & 6/13/05	109.39	109.38	8.16	8.05		NM NM			
ĺ	9/28/05 & 9/29/05	106.13	106.05	11.50	11.58		NM			
	7, 20, 00 & 7/27/03	100.13	100.03	11.50	11.50	1	1 1171		<u>i </u>	1
MW-6	3/21/2002	NM	110.10	NM	7.46	117.56	NM	5.0-20.0	4.0-20.0	3.0-4.0
	6/14/2002	NM	107.52	NM	10.04		NM			
ĺ	9/10/2002	NM	105.12	NM	12.44		NM			
	12/11/2002	NM	104.33	NM	13.23		NM			
	3/25/2003	NM	109.29	NM	8.27		NM			
	6/27/2003	NM	108.45	NM	9.11		NM			
ĺ	10/1/2003	NM	105.50	NM	12.06		NM			
ĺ	12/12/2003	NM	105.67	NM	11.89		NM			
	3/26/2004	NM	109.87	NM	7.69		NM			
	7/9/2004	NM	106.90	NM	10.66		NM			
	9/21/2004	NM	105.13	NM	12.43		NM			
ĺ	12/20/04 & 12/21/04	105.72	105.65	11.84	11.91		NM			
	3/16/05 & 3/17/05	110.19	110.19	7.37	7.37		NM			
			11010	NTN 6	7.46	1	i		i .	•
	6/9/05 & 6/13/05 9/28/05 & 9/29/05	NM 107.16	110.10 106.96	NM 10.40	7.46 10.60		NM			

Table 1. Water Level Data and Well Construction Details

Mani Site

200 Talmadge Drive, Santa Rosa, California

Well ID	Date	Groundwate (Mean Se		Depth-to	o-Water	Top of Casing Elevation (Mean Sea Level)	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite/ Grout Interval
		System On	System Off	System On	System Off			fe	et	
SP-1	6/1/2004	NM	NM	NM	11.58	NM	NM	14-17	13.5-19.5	0-13.5
SP-2	6/1/2004	NM	NM	NM	11.41	NM	NM	20-23	19-23	0-19.0
SP-3	6/1/2004	NM	NM	NM	11.07	NM	NM	19-22	18.5-24	0-18.5
SP-4	6/1/2004	NM	NM	NM	10.29	NM	NM	19-22	18.5-22	0-18.5
SP-5	6/1/2004	NM	NM	NM	10.87	NM	NM	14.5-17.5	14-19.5	0-14.0

 $\frac{\textbf{Abbreviations:}}{NM = Not \ Measured}$

Notes: Monitoring wells were resurveyed on March 13, 2001, and it was discovered that the top-of-casing elevations for MW-2 and MW-3 had been entered in the reverse order when the table was created. This table reflects the corrected top-of-casing elevations, and corresponding groundwater elevations for MW-2 and MW-3.

Table 2. Groundwater Gradient and Flow Direction

Mani Site

200 Talmadge Drive, Santa Rosa, California

Date	Groundwater Gradient (ft/ft)	Flow Direction	Wells used for Calculating Gradient and Flow Direction
2/2/1995	0.02	South 13 ⁰ West	MW-1, MW-2, MW-3
3/19/1998	0.02	South 5 ⁰ East	MW-1, MW-2, MW-3
9/9/1999	0.01	South 52 ⁰ West	MW-1, MW-2, MW-3
10/11/1999	0.01	South 50 ⁰ West	MW-1, MW-2, MW-3
11/17/1999	0.01	South 51 ⁰ West	MW-1, MW-2, MW-3
12/15/1999	0.01	South 47 ⁰ West	MW-1, MW-2, MW-3
1/12/2000	0.01	South 54 ⁰ West	MW-1, MW-2, MW-3
2/10/2000	0.01	South 49 ⁰ West	MW-1, MW-2, MW-3
3/15/2000	0.01	South 57 ⁰ West	MW-1, MW-2, MW-3
4/13/2000	0.01	South 55 ⁰ West	MW-1, MW-2, MW-3
5/12/2000	0.01	South 52 ⁰ West	MW-1, MW-2, MW-3
6/15/2000	0.01	South 52 ⁰ West	MW-1, MW-2, MW-3
7/14/2000	0.01	South 51 ⁰ West	MW-1, MW-2, MW-3
3/6/2001	0.01	South 55 ⁰ West	MW-1, MW-2, MW-3
6/6/2001	0.01	South 55 ⁰ West	MW-1, MW-2, MW-3
9/12/2001	0.01	South 56 ⁰ West	MW-1, MW-2, MW-3
12/13/2001	0.01	South 47 ⁰ West	MW-1, MW-2, MW-3
3/21/2002	0.01	West-Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
6/14/2002	0.02	West-Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
9/10/2002	0.02	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
12/11/2002	0.02	West-Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
3/25/2003	0.01	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
6/27/2003	0.01	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
10/1/2003	0.02	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
12/12/2003	0.02	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
3/26/2004	0.02	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
7/9/2004	0.01	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
9/21/2004	0.02	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
12/21/2004	0.01	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
3/17/2005	0.008	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
6/13/2005	0.02	West-Southwest	MW-1, MW-2, MW-4, MW-5, MW-6
9/29/2005	0.008	Southwest	MW-1, MW-2, MW-4, MW-5, MW-6

Note: Monitoring wells were resurveyed on March 13, 2001, and it was discovered that the top-of-casing elevations for MW-2 and MW-3 had been entered in the reverse order when the table was created. This table reflects the corrected top-of-casing elevations, and corresponding groundwater elevations for MW-2 and MW-3. Elevations are relative to mean sea level.

Table 3. Dissolved Oxygen and Indicator Parameters

Mani Site

Well ID	Sample Date ^a	Dissolved Oxygen (mg/L)	ORP (mV)	рН	Conductivity b (uS/cm)	Temperature (°F)
MW-1	9/10/2002			6.74	502	70.9
	12/11/2002			6.85	819	65.7
	3/25/2003	0.28		7.00	1053	65.2
	6/27/2003	0.28	-108	6.83	839	64.4
	10/1/2003	0.28	-35	7.00	883	65.8
	12/12/2003		-54	6.81	1007	66.0
	3/26/2004		-64	6.76	1039	64.0
	7/9/2004	0.50	-68	6.70	921	65.1
			stem Start-up Aft			1
	9/20/04 & 9/21/04*	0.33	-34	6.97	825	66.7
	12/20/04 & 12/21/04*	0.74	-54	6.91	891	66.9
	2/24/2005	^c				
	3/16/05 & 3/17/05*	9.09	4	6.84	835	65.1
	6/9/05 & 6/13/05*	9.03		6.86 ^e	723 ^e	68.8 ^e
	9/28/05 & 9/29/05*	8.38	201	7.22	660	68.0
			ı	1		
MW-2	9/10/2002				Not Sampled	
	12/11/2002				Not Sampled	1
	3/25/2003	0.41		6.50	650	66.7
	6/27/2003	0.70	147	6.62	612	65.8
	10/1/2003	0.92	205	6.63	648	67.5
	12/12/2003		232	6.63	655	68.2
	3/26/2004		250	6.26	612	65.5
	7/9/2004	1.88	222	6.50	578	66.4
	0.00.00.00.00.00.00.00.00.00.00.00.00.0		stem Start-up Aft			T
	9/20/04 & 9/21/04*	0.58	173	6.64	572	68.4
	12/20/04 & 12/21/04*	0.50	228	6.42	587	68.2
	2/24/2005	0.78				
	3/16/05 & 3/17/05*	0.64	203	6.30	619	66.0
	6/9/05 & 6/13/05*	1.27		6.34 ^e	601 ^e	68.3 ^e
	9/28/05 & 9/29/05*	1.33	168	6.70	574	68.2
MW-3	Well Destroyed					
MW-4	9/10/2002				Not Measured d	1
	12/11/2002			6.69	732	66.3
	3/25/2003	0.27		7.00	868	64.7
	6/27/2003	0.20	-94	6.60	820	66.4
	10/1/2003	0.29	-19	6.74	802	69.6
	12/12/2003		-533	6.75	826	67.8
	3/26/2004		2	6.55	886	64.0
	7/9/2004	3.31	-60	6.60	740	67.5
	0/00/04 0 0/04/04:		stem Start-up Aft			710
	9/20/04 & 9/21/04*	0.35	-39	7.03	633	71.8
	12/20/04 & 12/21/04*	0.69	-1	7.02	638	69.6
	2/24/2005	0.30				
	3/16/05 & 3/17/05*	4.55	17	6.77	552	64.8
	6/9/05 & 6/13/05*	6.85		6.80 ^e	507 ^e	70.6 ^e
	9/28/05 & 9/29/05*	0.41	43	7.50	514	71.4

Table 3. Dissolved Oxygen and Indicator Parameters

Mani Site

200 Talmadge Drive, Santa Rosa, California

Well ID	Sample Date ^a	Dissolved Oxygen (mg/L)	ORP (mV)	рН	Conductivity b (uS/cm)	Temperature (°F)
MW-5	9/10/2002			6.96	659	70.9
	12/11/2002			6.62	635	66.6
	3/25/2003	0.26		7.00	799	64.0
	6/27/2003	0.21	-43	6.57	774	65.3
	10/1/2003	0.30	19	6.67	732	67.8
	12/12/2003		31	6.67	735	67.3
	3/26/2004		41	6.54	803	62.8
	7/9/2004	0.45	7	6.50	726	65.5
	1	Biosparge Sy	stem Start-up Af	ter 7/9/04 Monito	ring Event	
	9/20/04 & 9/21/04*	0.27	27	6.65	653	68.5
	12/20/04 & 12/21/04*	0.59	45	6.61	639	66.7
	2/24/2005	0.27				
	3/16/05 & 3/17/05*	0.60	530	6.56	598	63.1
	6/9/05 & 6/13/05*	0.35		6.77 ^e	603 ^e	67.5 ^e
	9/28/05 & 9/29/05*	0.40	16	6.80	530	68.9
	<u>. </u>					
MW-6	9/10/2002			6.88	612	69.9
	12/11/2002			6.44	563	68.2
	3/25/2003	0.28		7.00	653	65.5
	6/27/2003	0.39	178	6.61	610	66.9
	10/1/2003	0.58	208	6.69	646	69.4
	12/12/2003		263	6.68	661	69.3
	3/26/2004		222	6.44	605	64.4
	7/9/2004	0.54	225	6.51	580	67.5
		Biosparge Sy	stem Start-up Af	ter 7/9/04 Monito	ring Event	
	9/20/04 & 9/21/04*	0.56	176	6.57	572	70.2
	12/20/04 & 12/21/04*	3.10	212	6.52	558	69.3
	2/24/2005	3.74				
	3/16/05 & 3/17/05*	4.70	179	6.43	560	65.3
	6/9/05 & 6/13/05*	5.44		6.64 ^e	590 ^e	68.9 ^e
	9/28/05 & 9/29/05*	5.79	175	6.90	525	70.9

Notes:

- a = Tabulated indicator parameters were the last to be recorded from each well.
- b =The conductivity was incorrectly reported for the 9/10/2002, 12/11/2002, and 3/25/2003 reporting periods. The decimal points have been moved to show the correct values.
- c = DO was not measured because well was covered by a truck that could not be moved at the time DO was measured.
- d = Well de-watered after purging 0.75 gallons. Indicator parameters were not measured.
- $e = A \; Hy dac \; meter \; was \; used \; to \; measure \; indicator \; parameters \; due \; to \; the \; unavailability \; of \; the \; Ultrameter.$
- * = During this sampling event, DO was measured on the first date while the system was on and the other indicator parameters were measured on the second date during purging activities.

Abbreviations:

mg/L = milligrams per liter

ORP = oxidation/reduction potential

mV = millivolts

uS/cm = microSiemens per centimeter

 ${}^{o}F = degrees Fahrenheit$

--- = Measurements not taken

Table 4. Analytical Results of Nutrient Compounds

Mani Site

		An	nalytic Method - E	PA 300 (IC), SM 450	00
Well	Sample	Nitrate as	Nitrite as	Ammonia as	Phosphate
ID	Date	Nitrogen	Nitrogen	Nitrogen	(PO ₄)
	Date	$(NO_3^{-1}-N)$	$(NO_2^{-1}-N)$	$(NH_4^{-1}-N)$	$(\mathbf{1O_4})$
			m	g/L	
MW-1	5/8/2003	0.99	NA	NA	<2.0
	7/9/2004	< 0.10	< 0.10	< 0.15	< 0.50
	Biosparge Syst	tem Start-up After	7/9/04 Monitoring	g Event	
	9/21/2004	< 0.15	< 0.15	0.37	< 2.0
		Injection 9/22/04			
	11/9/2004	< 0.50	NA	NA	NA
	12/21/2004	< 0.10	< 0.10	< 0.2	< 0.50
	3/17/2005	< 0.15	< 0.15	< 0.15	<1.0
	6/13/2005	1.4	< 0.15	< 0.15	<1.0
		nt Injection 7/21/0	5		
	8/12/2005*	2.0	0.0	NA	NA
	9/29/2005	< 0.50	< 0.5	< 0.2	< 0.50
		•		•	
MW-2	5/8/2003	6.7	NA	NA	<2.0
	7/9/2004	1.4	< 0.10	< 0.15	< 0.50
		tem Start-up After			
	9/21/2004	1.3	< 0.15	< 0.15	< 2.0
		Injection 9/22/04			
	11/9/2004	5.9	NA	NA	NA
	12/21/2004	1.2	< 0.10	< 0.2	< 0.50
	3/17/2005	2.0	< 0.15	< 0.15	<1.0
	6/13/2005	1.7	< 0.15	< 0.15	<1.0
		nt Injection 7/21/0			
	8/12/2005*	0.5	0.0	NA	NA
	9/29/2005	0.84	< 0.50	< 0.2	< 0.50
		1		T T	
MW-4	7/9/2004	<0.10	< 0.10	< 0.15	< 0.50
		tem Start-up After			
	9/21/2004	0.17	< 0.15	< 0.15	<2.0
		Injection 9/22/04		T	
	11/9/2004	< 0.50	NA	NA	NA
	12/21/2004	< 0.10	< 0.10	<0.2	< 0.50
	3/17/2005	<0.15	<0.15	<0.15	<1.0
	6/13/2005	<0.15	< 0.15	< 0.15	<1.0
		nt Injection 7/21/0		1 1	
	8/12/2005*	2.0	0.0	NA 0.2	NA 0.50
	9/29/2005	< 0.50	< 0.50	< 0.2	< 0.50
1 577 -		0.40	0.40	0.45	0.#0
MW-5	7/9/2004	<0.10	<0.10	<0.15	< 0.50
		tem Start-up After			2.0
	9/21/2004	<0.15	< 0.15	< 0.15	<2.0
		Injection 9/22/04	NT A	NT A	D.T.A.
	11/9/2004	3.0	NA 10.10	NA 10.2	NA 10.50
	12/21/2004	<0.10	<0.10	<0.2	<0.50
	3/17/2005	<0.15	<0.15	<0.15	<1.0
	6/13/2005	0.16	<0.15	< 0.15	<1.0
		nt Injection 7/21/0		NT A	NT 4
	8/12/2005*	0.0	0.0	NA .0.2	NA 0.50
	9/29/2005	< 0.50	< 0.50	< 0.2	< 0.50

Table 4. Analytical Results of Nutrient Compounds

Mani Site

200 Talmadge Drive, Santa Rosa, California

		Aı	nalytic Method - E	PA 300 (IC), SM 450	00
Well ID	Sample Date	Nitrate as Nitrogen (NO ₃ -1-N)	Nitrite as Nitrogen (NO ₂ -1-N)	Ammonia as Nitrogen (NH ₄ -1-N)	Phosphate (PO ₄)
			m	g/L	
MW-6	5/8/2003	5.8	NA	NA	< 2.0
	7/9/2004	1.4	< 0.10	< 0.15	< 0.50
	Biosparge Syst	em Start-up After	· 7/9/04 Monitoring	g Event	
	9/21/2004	1.2	< 0.15	0.30	<2.0
	First Nutrient	Injection 9/22/04			
	11/9/2004	5.7	NA	NA	NA
	12/21/2004	1.2	< 0.10	< 0.2	< 0.50
	3/17/2005	1.8	< 0.15	< 0.15	<1.0
	6/13/2005	1.6	< 0.15	< 0.15	<1.0
	Second Nutries	nt Injection 7/21/0	5	•	
	8/12/2005*	2.0	0.0	NA	NA
	9/29/2005	1.0	< 0.50	< 0.2	< 0.50

Abbreviations:

mg/L = milligrams per liter

NA = Not analyzed

<u>Note:</u> 9/21/04 data is considered baseline for pre-nutrient injection. The first nutrient injection was completed 9/22/04, after 3rd quarter sampling.

^{* =} Concentrations of Nitrate and Nitrite were analyzed using Nitrate/Nitrite test strips in the field.

Table 5. Analytical Results of Groundwater Samples

Mani Site

Well ID	Date Sampled	Analytic Methods	TPH-G	TPH-D	В	Т	E	X	МТВЕ	DIPE	ЕТВЕ	TAME	TBA	EDC / EDB
ш	Sampleu					-		ug	g/L		-	-		
MW-1	2/2/95	8015M / 8020	32,000	2600 °	3,600	6,600	1,300	6,100	NA	ND	ND	ND	ND	NA
	4/6/95	8015M / 8020	10,000	NA	1,400	1,500	560	1,600	NA	ND	ND	ND	ND	NA
	3/19/1998	5030/602/8260	30,000	1,400	1,300	1,000	770	2,900	360	ND	ND	ND	ND	NA
	9/9/1999	5030A/8260B/8015M	19,000	1,600	570	220	360	1,100	140	ND	ND	ND	ND	NA
	12/15/1999	5030A/8260B/8015M	13,000	2,600	1,400	410	1,400	3,400	280	ND	ND	ND	ND	NA
	3/15/2000	5030A/8260B/8015M	23,000	1,600	920	360	970	2,600	120	ND	ND	ND	ND	< 50
	7/14/2000	5030A/8260B/8015M	22,000	880	1,300	240	1,400	3,100	200	ND	ND	ND	ND	< 50
	3/6/2001	5030A/8260B/8015M	25,000	2,900	1,700	310	2,200	4,400	260	ND	ND	ND	ND	< 0.50
	6/6/2001	5030A/8260B/8015M	16,000	470 °	980	140	1,300	1,800	200	ND	ND	ND	ND	< 50
	9/12/2001	5030A/8260B/8015M	17,000	1,100 °	730	96	980	1,800	240	ND	ND	ND	31	< 0.50
	12/13/2001	5030A/8260B/8015M	29,000	4,100 °	1,400	560	1,900	4,000	120	ND	ND	ND	ND	< 5.0
	3/21/2002	5030A/8260B/8015M	6,400	1,700 °	400	200	740	1,440	28	<10	<10	<10	<10	<10
	6/14/2002	5030A/8260B/8015M	12,000	2000 ^a	370	150	860	1,700	45	<10	<10	<10	<200	NA
	9/10/2002	5030A/8260B/8015M	11,000	3800 °	140	85	500	940	38	< 5.0	< 5.0	< 5.0	<100	NA
	12/11/2002	5030/8015M/8260B	9,100	3200 a	280	120	600	840	64	<10	<10	<10	<250	NA
	3/25/2003	5030/8015M/8260B	8,500	NA	160	210	860	1,780	33	<10	<10	<10	<250	<10
	5/8/2003	5030/8015M/8260B	9,900	NA	250	450	790	2,020	<10	<10	<10	<10	<250	<10
	6/27/2003	5030/8015M/8260B	5,800	NA	140 180	220 330	580	1,350	19	<10	<10	<10	<25	<10
	10/1/2003	5030/8015M/8260B	8,100	NA	230	380	1,100	2,700	36 33	<10	<10	<10	<250	<10
	12/12/2003 3/26/2004 ^r	5030/8015M/8260B	23,000	NA 1,800 ^a			1,800	5,290	20	<20	<20	<20	<500	<20
	7/9/2004	5030/8015M/8260B	10,000 4,900	1,600 ^a	92 40	140	900 370	2,200 880	20	<1.0	<1.0	<1.0 <10	<25 <250	NA NA
	7/9/2004	5030/8015M/8260B	4,900	1,000		38 System Start-i				<10	<10	<10	<250	NA
	9/21/2004	5030/8015M/8260B	4,300	420 °	16	13	150	281	<10	<10	<10	<10	<250	NA
	12/21/2004	5030/8015M/8260B	4,500	1,200 °	11	11	37	167	<10	<10	<10	<10	<250	NA NA
	3/17/2005	5030/8015M/8260B	1,200	290 ^u	1.3	1.6	25	66	1.4	<1.0	<1.0	<1.0	<25	NA NA
	6/13/2005	5030/8015M/8260B	470	130 °	1.2	<1.0	22	32.3	<1.0	<1.0	<1.0	<1.0	<25	NA NA
	9/29/2005	5030/8015M/8260B	280	<50	<1.0	<1.0	10	7.9	<1.0	<1.0	<1.0	<1.0	<25	NA NA
	3/23/2003	3030/8013W/8200B	200	<u> </u>	<1.0	<1.0	10	1.5	<1.0	<1.0	<1.0	<1.0	\23	INA
MW-2	2/2/95 a	8015M / 8020	<50.0	110 ^e	< 0.5	1.2	< 0.5	< 0.5	NA	ND	ND	ND	ND	NA
141 44 -2	3/19/1995	5030/602/8260	<50.0	<50	<0.3	< 0.3	< 0.5	< 0.5	NA	ND	ND	ND	ND	NA
	9/9/1999	5030A/8260B/8015M	<50.0	<50	<0.3	<0.3	<0.5	<0.5	ND	ND	ND	ND	ND	NA
	12/15/1999	5030A/8260B/8015M	<50	<50	<0.30	< 0.30	< 0.50	< 0.50	< 0.50	ND	ND	ND	ND	NA
	3/15/2000	5030A/8260B/8015M	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	ND	ND	ND	ND	<0.5
	7/14/2000	5030A/8260B/8015M	<50	<50	<0.30	< 0.30	< 0.50	< 0.50	< 0.50	ND	ND	ND	ND	<0.5
	3/6/2001	5030A/8260B/8015M	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	ND	ND	ND	ND	< 0.50
	6/6/2001	5030A/8260B/8015M	<50	<50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	ND	ND	ND	ND	< 0.50
	9/12/2001	5030A/8260B/8015M	< 50	< 50	< 0.30	< 0.30	< 0.50	< 0.50	< 0.50	ND	ND	ND	ND	< 0.50
	12/13/2001		•		•	•	Not Sam	pled	•	•	•	•		
	3/21/2002	5030A/8260B/8015M	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
	6/14/2002		•	•	•		Not Sam	pled	•	•	•	•		
	9/10/2002						Not Sam	pled						
	3/25/2003	5030/8015M/8260B	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
	6/27/2003	5030/8015M/8260B	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
	10/1/2003	5030/8015M/8260B	<50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
	12/12/2003	5030/8015M/8260B	< 50	NA	<1.0	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
	3/26/2004 ^r	5030/8015M/8260B	<50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	NA
	7/9/2004	5030/8015M/8260B	<50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	NA
						System Start-ı								
	9/21/2004	5030/8015M/8260B	< 50	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	NA
	12/21/2004	5030/8015M/8260B	<50	<50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	NA
	3/17/2005	5030/8015M/8260B	<50	< 50	<1.0	<1.0	2.1	4.1	<1.0	<1.0	<1.0	<1.0	<25	NA
	6/13/2005	5030/8015M/8260B	<50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	NA
	9/29/2005	5030/8015M/8260B	<50	<50	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<25	NA
	Water Quality C	Objectives in ug/L	<50	<50	<1	<42	<29	<17	<5	None	None	None	<12	< 0.5

Table 5. Analytical Results of Groundwater Samples

Mani Site

Websign Date						1	e Diive, Sa	1		ı	I				1
Mary 1966 1967 1968			Analytic Methods	TPH-G	TPH-D	В	T	E	X	MTBE	DIPE	ETBE	TAME	TBA	EDC / EDB
New 1	ID	Sampled			1			1	uş	g/L	ı	1			1
\$\frac{3}{2}\frac{1}	MW-3	2/2/95 a	8015M / 8020	<50.0	460	5.4	12	1.3			NA	NA	NA	NA	NA
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		3/19/1995		< 50.0			< 0.3	< 0.5	< 0.5						
\$\frac{3152000}{71,0000} \$\frac{30000}{5000} \$\frac{3000}{5000} \$\frac{300}{500} \$\frac{40.5}{0.000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.0000} \$\frac{40.5}{0.00000} \$\frac{40.5}{0.00000} \$\frac{40.5}{0.00000} \$\frac{40.5}{0.000000} \$\frac{40.5}{0.000000000000000000000000000000000															
\$\frac{7\pi 12000}{3600} \$\frac{500}{5000} \$\frac{500}{500} \$\							1016.0		10100						
\$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$8.00 \$6.0															
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c															
12/13/2001															
MW-4 321/2002 S000AR3608/915M 420 129° 4.1 cl.0 5.4 cl.0 d.0 d.0 cl.0			3030A/8200B/8013WI	\ 30	₹50	₹0.50	<0.50			₹0.50	ND	ND	ND	ND	₹0.50
614/2002 \$3930AS206BS015M \$50 \$10 \$10 \$1.0 \$1.0 \$3.4 \$1.0 \$3.3 \$1.0 \$1.0 \$1.0 \$2.5 \$NA \$1.0 \$1.0 \$2.5 \$NA \$1.0 \$1.0 \$1.0 \$2.5 \$NA \$1.0															
614-2002 \$030AS2C6B89ISM					100 5						1				1
910/2002 9509ASS2GRB 91558 1,300 200" 6.6 <10 38 <1.0 27 <1.0 <1.0 <1.0 <1.0 <25 NA 121122002 5000005MS25GRB 510 230" 2.1 <1.0 1.3 <1.0 28 <1.0 <1.0 <1.0 <25 NA 3252003 950005MS25GRB 410 NA <1.0 <1.0 <1.0 1.7 <1.0 24 <1.0 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <25 <1.0 <1.0 <1.0 <25 <1.0 <1.0 <1.0 <25 <1.0 <1.0 <1.0 <1.0 <25 <1.0 <1.0 <1.0 <1.0 <25 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	MW-4														
1211/2002 59309015MS2608 \$10 \$20" \$21 \$1.0 13 \$1.0 \$24 \$1.0 \$1.0 \$1.0 \$25 \$1.0 \$1.0 \$25 \$2.0 \$1.0 \$2.0															
\$252003 \$9308015M3208															
6272003 50030015MS2508 440 NA cl.0															
191/2003 \$9308015M25268 \$39															
12122003 \$0089015M3200B \$400 \$NA															
\$\frac{3}{2}\frac{2}{2}\frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac															
Silespage System Start-up After 77904 Monitoring Event				290				<1.0				<1.0		<25	
921/2004 50308015M3200B 650 91° < 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		7/9/2004	5030/8015M/8260B	870	120 °	3.5	<1.0	2.3	10.3	6.4	<1.0	<1.0	<1.0	<25	NA
\$\frac{12212004}{30308015M32080} \$\frac{100}{50}\$ \$\frac{1}{50}\$ \$															
317,2005 5030 ND15M3260B 139 650 610 61.0 61															
MW-5															
9992005 50308015M8260B c50 c10 c1.0 c1.0 c1.0 c1.0 c1.0 c1.0 c1.0 c25 NA															
MW-5 321/2002 \$030A/8266B/8015M \$400 \$50 \$4.0 \$4.0 \$4.0 \$4.0 \$32 \$4.0 \$4.0 \$4.0 \$4.0 \$25 \$4.0 \$614/2002 \$5030A/8266B/8015M \$50 \$50 \$4.0															
6/14/2002 5030ANS260BR0ISM <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA		9/29/2005	5050/8015M/8200B	<50	<30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<23	NA
6/14/2002 5030ANS260BR0ISM <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA	MW-5	3/21/2002	5030A/8260B/8015M	400	< 50	<1.0	<1.0	<1.0	<1.0	32	<1.0	<1.0	<1.0	<25	<1.0
12/11/2002 5030/8015Mx260B 390 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0				< 50		<1.0		<1.0			<1.0		<1.0		NA
\$\frac{3252003}{62772003} \text{\$5030801SM28260B} \text{\$290} \text{NA} < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 \qua												<1.0			
6272003 5030N015M3260B 290 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <2.5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0															
101/12003															
12/12/2003 5030/8015M/8260B 210															
\$\frac{37267004^1}{7992004} \ \begin{array}{cccccccccccccccccccccccccccccccccccc															
7/9/2004 5030/8015M/8260B 280 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA															
Siospage System Start-up After 779/04 Monitoring Event 921/2004 5030/8015M/8260B 230 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <															
9/21/2004 5030/8015M/8260B 230 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		1/9/2004	3030/8013IW/8200B	200	0.0						<1.0	<1.0	<1.0	\23	INA
1221/2004 5030/8015M/8260B 210 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		9/21/2004	5030/8015M/8260B	230	<50						<1.0	<1.0	<1.0	<25	NA
3/17/2005 5030/8015M/8260B 200 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1															
MW-6 3/21/2002 5030/8015M/8260B 200 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 NA										4.4					
MW-6 3/21/2002 5030A/8260B/8015M <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0															
6/14/2002 5030A/8260B/8015M <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.		9/29/2005	5030/8015M/8260B	200	< 50	<1.0	<1.0	<1.0	1.5	1.4	<1.0	<1.0	<1.0	<25	NA
6/14/2002 5030A/8260B/8015M <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	MW	2/21/2002	5020 A /9260 D /9015 M	-50	Z50			<1.0	<1.0		<1.0	<1.0		- 25	<1.0
9/10/2002 5030A/8260B/8015M <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA <12/11/2002 5030/8015M/8260B <50 <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	IVI W -0														
12/11/2002 5030/8015M/8260B <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 NA <3/25/2003 5030/8015M/8260B <50 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0															
3/25/2003 5030/8015M/8260B <50 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <2.5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0															
6/27/2003 5030/8015M/8260B <50 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0															
10/1/2003 5030/8015M/8260B <50 NA <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0															
3/26/2004 5030/8015M/8260B <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA					NA										
3/26/2004 5030/8015M/8260B <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA		12/12/2003	5030/8015M/8260B	260	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
Sisparge System Start-up After 7/9/04 Monitoring Event			5030/8015M/8260B			<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0		NA
9/21/2004 5030/8015M/8260B <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 </td <td></td> <td>7/9/2004</td> <td>5030/8015M/8260B</td> <td><50</td> <td><50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><25</td> <td>NA</td>		7/9/2004	5030/8015M/8260B	<50	<50						<1.0	<1.0	<1.0	<25	NA
12/21/2004 5030/8015M/8260B <50		0.01.000 : 1	5000 1004 53 5100 50-								1.0			2.5	T 371
3/17/2005 5030/8015M/8260B <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <25 NA 6/13/2005 5030/8015M/8260B <50															
6/13/2005 5030/8015M/8260B <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 </td <td></td>															
9/29/2005 5030/8015M/8260B <50 <50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.															
Water Quality Objectives in ug/L <50 <50 <1 <42 <29 <17 <5 None None None <12 <0.5		7,27,2003	5050,0015HE0200B			11.0	11.0		11.0	11.0	11.0	11.0	11.0	-22	1 1/11
		Water Quality (Objectives in ug/L	< 50	<50	<1	<42	<29	<17	<5	None	None	None	<12	< 0.5

Table 5. Analytical Results of Groundwater Samples

Mani Site

200 Talmadge Drive, Santa Rosa, California

Well ID	Date Sampled	Analytic Methods	трн-G	TPH-D	В	Т	E	X	MTBE	DIPE	ETBE	TAME	TBA	EDC / EDB
ш	Sampleu							uş	g/L		•			
SP-1	6/1/2004	EPA 5030/8015M/8260B	< 50	NA	<1.0 ^g	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
SP-2	6/1/2004	EPA 5030/8015M/8260B	< 50	NA	<1.0 g	<1.0	<1.0	<1.0	5.7	<1.0	<1.0	<1.0	<25	<1.0
SP-3	6/1/2004	EPA 5030/8015M/8260B	4,100	NA	< 5.0	< 5.0	11	240	< 5.0	< 5.0	< 5.0	< 5.0	<100	< 5.0
SP-4	6/1/2004	EPA 5030/8015M/8260B	3,600	NA	15	< 5.0	81	127	10	<1.0	<1.0	<1.0	<25	< 5.0
SP-5	6/1/2004	EPA 5030/8015M/8260B	<50	NA	<1.0	<1.0	<1.0	<1.0	5.1	<1.0	<1.0	<1.0	<25	<1.0
			•			•	•	•	•	•	•			•
Trip Blank	3/19/1998	5030 / 602	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA
•	9/9/1999	5030A / 8020	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA
	12/15/1999	8260B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3/15/2000	5030A / 8020	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA
	7/14/2000	5030A / 8020	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA
	3/6/2001	5030A / 8020	< 50	NA	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA
	6/6/2001	5030A / 8020	< 50	NA	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA
	9/12/2001	5030A / 8020	< 50	NA	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA
	12/13/2001	5030A / 8020	< 50	NA	< 0.30	< 0.30	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA
	3/21/2002	8260	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0
	6/14/2002	8015M/8020	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	NA	NA	NA	NA	NA	NA
	9/9/2002	8015M/8020	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	NA	NA	NA	NA	NA	NA
	12/11/2002	5030/8015M/8020	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	<2.5	NA	NA	NA	NA	NA
	3/25/2003	5030/8015M/8020	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	NA	NA	NA	NA	NA	NA
	6/27/2003	5030/8015M/8020	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	NA	NA	NA	NA	NA	NA
	10/1/2003	5030/8015M/8020	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	NA	NA	NA	NA	NA	NA
	12/12/2003	5030/8015M/8020	< 50	NA	< 0.5	< 0.5	< 0.5	<1.5	NA	NA	NA	NA	NA	NA
	3/26/2004	5030/8015M/8260B	<50	NA	< 0.5	< 0.5	< 0.5	<1.5	NA	NA	NA	NA	NA	NA
	Water Ouality	Objectives in ug/L	<50	<50	<1	<42	<29	<17	<5	None	None	None	<12	<0.5

- Notes:

 a = Sampled by Sierra Environmental Service:

 b = Laboratory reports the positive result appears to be both a heavier and lighter hydrocarbon than diese
 - c = The Laboratory reports that results in the diesel range are primarily due to overlap from a gasoline range produc
 - ^a = The sample does not exhibit a chromatographic pattern characteristic of diesel. Higher boiling point components of weathered gasoline are present
 - ^e = The laboratory reports the positive result appears to be a heavier hydrocarbon than diesel
 - ¹ = 3/26/04 samples were analyzed for TPH-MO by 8015M. Results were ND<200 ug/L
 - g = Tetrahydrofuran (THF) was detected and is the primary ingredient in PVC pipe glue and consequently may not be a persistent contaminar

Abbreviations:

TPH-G = Total petroleum hydrocarbons as gasoline TPH-D = Total petroleum hydrocarbons as diesel

B = Benzene

T = Toluene

E = Ethyl benzene

X = Total xylenes

EDC = 1,2-dichloroethane

EDB = 1,2-dibromoethane

NA = Not analyzed

ND = Not detected above laboratory detection limits

The 5 Oxygenates Include:

MTBE = Methyl tert-butyl ether DIPE = Di-isopropyl ether ETBE = Ethyl tert-butyl ether TAME = Tert-amyl methyl ether

TBA = Tert-butyl alcohol

Analytic Methods:

5030 = EPA Method GCFID/5030 for TPH-G 602 = EPA Method 602 for BTEX

8020 = EPA Method for MTBE

8260B = EPA Method 8260 for BTEX / Oxygenates

8015M = EPA method 8015M for Diesel

Table 6. Operation and Maintenance Data

Mani Site

200 Talmadge Drive, Santa Rosa, CA

Date	Sequencing Time Per Point	System Hour Meter Reading	Pressure Reading (psi)	S.C.F.M.
5/11/04 &	Drilled and installed	l five biosparge poi	nts	
5/12/04				
5/26/04 &	Developed five bios	parge points		
5/27/04				
	•			
06/01/04	Sampled biosparge	points		
	•			
06/09/04	System start-up			
0.414.410.4	les		T T	
06/16/04	Tested program to 1	run sparge points		
0/04/2004	60.14	020.2	20	2.0
8/24/2004	60 Min	938.2	20	2.0
9/20/2004	60 Min	1586.2	21	2.2
0/22/2004	First Nutrient Inica	tion	<u> </u>	
9/22/2004	First Nutrient Injec	uon		
10/6/2004	60 Min	1921.2	21	2.2
10/0/2004	60 Min	2137.5	22	2.2
11/2/2004	60 Min	2570.9	20	2.2
11/15/2004	60 Min	2882.5	20	2.6
11/17/2004	60 Min	2925.5	20	2.5
11/1//2001	00 1/1111	2,20.0	20	
11/24/2004	Increased oxygen flo	ow to each sparge p	oint due to low DO leve	els.
	60 Min	NM	NM	3.3
1/12/2005				
1/12/2003	Replaced all sparge		ections because they w	are loose.
	Replaced all sparge 60 Min	point caps. 4246.2	20	3.4
1/12/2005	Replaced all sparge	point caps.		
	Replaced all sparge 60 Min 60 Min	point caps. 4246.2 5041.9 -4 connections. Che ghten tee on SP-1.	20	3.4
1/14/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP-	point caps. 4246.2 5041.9 -4 connections. Che	20	3.4
1/14/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tig 60 Min	4246.2 5041.9 4 connections. Cheghten tee on SP-1. NM ^a entrations to verify	20 20 ck back pressure at SP 20 that DO concentrations	3.4 3.0 -3. Repaired SP-
1/14/2005 1/20/2005 2/1/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tig 60 Min Measured DO conce as a result of flow in Test back pressure increase DO concen	4246.2 5041.9 4 connections. Che ghten tee on SP-1. NM ^a entrations to verify acrease and repairs. vs. flow for each spatrations in each spatrations in each spatrations in each spatrations in each spatrations.	20 20 ck back pressure at SP 20 that DO concentrations arge point and increase rge point.	3.4 3.0 -3. Repaired SP 3.0 s were increasing
1/14/2005 1/20/2005 2/1/2005 2/24/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tig 60 Min Measured DO conce as a result of flow in	4246.2 5041.9 4 connections. Che ghten tee on SP-1. NM ^a entrations to verify acrease and repairs. vs. flow for each spa	20 20 ck back pressure at SP 20 that DO concentrations	3.4 3.0 -3. Repaired SP 3.0 s were increasin
1/14/2005 1/20/2005 2/1/2005 2/24/2005 3/1/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tig 60 Min Measured DO conce as a result of flow in Test back pressure increase DO concen 60 Min	point caps. 4246.2 5041.9 4 connections. Che ghten tee on SP-1. NM ^a entrations to verify acrease and repairs. vs. flow for each spatrations in each spatration each each each each each each each each	20 20 ck back pressure at SP 20 that DO concentrations arge point and increase rge point. 20	3.4 3.0 -3. Repaired SP 3.0 s were increasing air flow rate to 6.0
1/14/2005 1/20/2005 2/1/2005 2/24/2005 3/1/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tig 60 Min Measured DO conce as a result of flow in Test back pressure increase DO concen 60 Min 60 Min	point caps. 4246.2 5041.9 4 connections. Che ghten tee on SP-1. NM ^a entrations to verify acrease and repairs. vs. flow for each spatrations in each spatration each each each each each each each each	20 20 ck back pressure at SP 20 that DO concentrations arge point and increase rge point. 20 20	3.4 3.0 -3. Repaired SP- 3.0 s were increasing air flow rate to 6.0 6.0
1/14/2005 1/20/2005 2/1/2005 2/24/2005 3/1/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tig 60 Min Measured DO conce as a result of flow in Test back pressure increase DO concen 60 Min	point caps. 4246.2 5041.9 4 connections. Che ghten tee on SP-1. NM ^a entrations to verify acrease and repairs. vs. flow for each spatrations in each spatration each each each each each each each each	20 20 ck back pressure at SP 20 that DO concentrations arge point and increase rge point. 20	3.4 3.0 -3. Repaired SP 3.0 s were increasing air flow rate to 6.0
1/14/2005 1/20/2005 2/1/2005 2/24/2005 3/1/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tip 60 Min Measured DO concer as a result of flow in Test back pressure increase DO concer 60 Min 60 Min 60 Min Adjusted compressor	point caps. 4246.2 5041.9 4 connections. Che ghten tee on SP-1. NMa entrations to verify crease and repairs. vs. flow for each spatrations in each spatration i	20 20 ck back pressure at SP 20 that DO concentrations arge point and increase rge point. 20 20	3.4 3.0 -3. Repaired SP- 3.0 s were increasing air flow rate to 6.0 6.0 6.0 52-70 psi.
1/14/2005 1/20/2005 2/1/2005 2/24/2005 3/1/2005 3/17/2005 3/22/2005 3/24/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tip 60 Min Measured DO concer as a result of flow in Test back pressure increase DO concer 60 Min 60 Min 60 Min Adjusted compressore Replaced all air tub	point caps. 4246.2 5041.9 4 connections. Che ghten tee on SP-1. NMa entrations to verify icrease and repairs. vs. flow for each spatrations in each spatration in each	20 ck back pressure at SP 20 that DO concentrations arge point and increase rge point. 20 20 20 ings from 42-60 psi to 2 point to a more flexible	3.4 3.0 -3. Repaired SP- 3.0 s were increasing air flow rate to 6.0 6.0 6.0 52-70 psi. e tubing.
1/14/2005 1/20/2005 2/1/2005 2/24/2005 3/1/2005 3/17/2005 3/22/2005	Replaced all sparge 60 Min 60 Min Sealed SP-2 and SP- air hose leakage. Tip 60 Min Measured DO concer as a result of flow in Test back pressure increase DO concer 60 Min 60 Min 60 Min Adjusted compressor	point caps. 4246.2 5041.9 4 connections. Che ghten tee on SP-1. NMa entrations to verify crease and repairs. vs. flow for each spatrations in each spatration i	20 ck back pressure at SP 20 that DO concentrations arge point and increase rge point. 20 20 20 20 ings from 42-60 psi to 5	3.4 3.0 -3. Repaired SP- 3.0 s were increasing air flow rate to 6.0 6.0 6.0 52-70 psi.

Notes:

a = Misread System Hour Meter Reading

psi = Pounds per square inch

S.C.F.M = Standard Cubic Feet Per Minute

NM = Not measured

DO = Dissolved oxygen

WINZLER & KELLY CONSULTING ENGINEERS

Site-Specific Groundwater Sampling Procedures Mani Site 200 Talmadge Drive Santa Rosa, California September 28 and 29, 2005

1. Objective

Collect representative water level data and groundwater samples.

2. Background

Based on the analytical results of the previous sampling, field work proceeded from the monitoring wells in which the samples collected had the lowest concentrations of constituents to the wells that had the highest concentrations of constituents.

Water levels were measured to determine the direction and gradient of groundwater flow. Representative groundwater samples from the water-bearing zone were obtained using disposable polyethylene bailers following purging.

3. Personnel Required and Responsibilities

<u>Winzler & Kelly Field Technicians:</u> Pon Xayasaeng and Trevor White performed groundwater monitoring and sampling activities in accordance with the procedures outlined below.

4. Procedures

4a. Biosparge System Shutdown and DO Concentrations, September 28, 2005

- The membrane on the YSI Model 55 DO meter was checked for the presence of bubbles and wrinkles, neither of which was observed.
- The meter was calibrated in the field prior to collecting measurements.
- Using the calibrated YSI Model 55 DO Meter, DO concentrations were measured in each monitoring well.
- Following DO measurements, the biosparge system was shutdown to allow the groundwater to equilibrate.

4b. Decontamination Procedures, September 29, 2005

- Using alconox soap and potable water, all equipment and instruments to be used were decontaminated upon arriving at the site.
- All equipment and instruments were decontaminated after use in each well.
- All equipment and instruments were decontaminated after field activities had been completed.

• Nitrile gloves were worn by sampler at all times and changed after handling equipment and instruments.

4c. Calibration Procedures, September 29, 2005

- The Ultrameter was calibrated for conductivity and pH. Temperature calibration is not necessary in the Ultrameter.
- Conductivity was calibrated using KCl-7000 standard solution within its expiration date.
- The calibration for pH included "zeroing" the Ultrameter with a pH 7 buffer solution followed by adjusting the gain with acid and base buffers (4.01 and 10.00). All buffer solutions were within their expiration date.

4d. Groundwater Elevations, September 28 and 29, 2005

- A water level meter was used to determine the depth-to-groundwater (DTW) in each monitoring well after allowing each well to equilibrate to atmospheric pressure for at least 30 minutes.
- DTW was measured while the biosparge system was turned on and while the system was turned off.
- Recorded depth, time and visual observations regarding well access, condition, security, etc on water level data sheet.
- The water level meter was decontaminated after each use.

4e. Purging, September 29, 2005

- The volume of standing water in each monitoring well was calculated using the diameter of the well, the measured depth-to-water and the depth-to-bottom. The volume was recorded on the Well Sampling Data Sheet for each well.
- Monitoring wells were purged using a 12-volt DC 1.5-inch electric submersible pump.
- Field parameters (pH, conductivity, temperature) were obtained with the Ultrameter and visual observations of color/odor/turbidity at each well casing interval throughout the purging process.
- The time, readings, and visual comments were recorded on the Well Sampling Data Sheet.
- Each well was purged until field parameters stabilized, not exceeding 7 casing volumes, or until the well de-watered.
- The electric submersible pump was decontaminated after each use.
- All excess water was transferred to 55-gallon drums labeled and secured on site.

4f. Groundwater Sample Collection, September 29, 2005

- Groundwater samples were collected by lowering previously unused, disposable, polyethylene, bottom-filling bailers into the well once the water level had recharge to at least 80%.
- When completely full, the bailer was carefully retracted from the well and the groundwater was transferred from the bailers to the appropriate certified clean sampling containers.

- Groundwater transferred into 40-ml glass vials were preserved with HCl.
- Upon filling, each vial was immediately capped. The vial was checked for air bubbles by inverting and gently tapping the vial.
- All sample containers were labeled with the following information:

Sample ID Date and Time Sample Collected

Location Sampler's Initials

Project Number

- Sample information was documented on a chain-of-custody form.
- All sample containers were placed in an ice chest chilled with ice.
- Upon completion of the sampling activities, each well was closed and secured by replacing the well cap and securing the lock.

5. Equipment Used:

- Disposable gloves
- Potable water
- Alconox soap
- Containers to hold rinsate water
- Scrub Brushes
- Tools to open wells
- Keys to wells
- Water Level Data Form/pencil
- Well Sampling Data Sheet
- Groundwater Sampling Log form
- Water level meter
- 12-volt DC 1.5-inch electric submersible pump
- Ultrameter
- Containers to hold extracted water (as required)
- Disposable bailers (previously unused)
- Monofilament nylon line (50 lb test)
- Scissors
- Laboratory supplied sample containers (preserved, as required)
- Sample labels
- Ice chest
- Ice
- Labels/indelible marker
- Trash bags
- 55-gallon drums
- Ziploc bags
- Portable 12-V battery

OJECT NAME: OJECT NUMBE	R: <u>0234</u>	305001.320	202	PROJECT DATE: 9 SAMPLER: 10n	Xaijasalno	-	
LL DESIGNAT	10N: <u>JUW</u> -			SAMPLE NUMBER:	MW-1		
TOP OF C DEPTH TO DEPTH OF HEIGHT O	VELL HEAD/VAUL ASING ELEVATIO GROUNDWATE WELL: 75 OF WATER COLUN WATER ELEVATION	ON: R (initial): 11-75 MEA MN (C-B):	SURED	· .			
ASING DIAMET	ER: 2"	3"		4"	OTHER	· · · · · · · · · · · · · · · · · · ·	
Volume (\	/ELL VOLUME: D /) of 2" well - 0.16 V) of 4" well - 0.65	3 gal/ft	(1.25)	(0.(63)-2	3 gal		-
DOR NO		SHEEN NO	FLOAT	TING PRODUCT THICK	NESS_NO_		· •
PUMP TYPE:	POLY BA ELECTRI		STAIN	ILESS BAILEROTHER			
PUMP DEPTH:				1			- 7
TIME	GALLONS PURGED	NO. OF WELL VOLUMES	рН	TEMPERATURE (°F OR C)	CONDUCTIVITY (mmhos/cm or µmhos/cm	TURBIDITY (NTU or visual)	ORF
		2.3	ľ	7.6 / 21.4	669.6	Cloar	7.11
		4.6	2	7.6 20.6	669.9.	clear	Zto
		4.9	3	7.22/20.0	659.9	clear	201
							_
							_
							_
	·						
				·			
RECHARGE	RATE (qualitative)	:					
SAMPLER T	YPE: TEFLO	ON BAILER	AC	RYLIC BAILER	DISPOSABL	E BAILER	
	OLLECTED:	PRESERVED VO		UNPR			
	•	500 ml PLASTIC FILTERED .	BOTTLE W	TITH PRESERVATIVE F	OR METALS: UNFILTERED		
		OTHER					
COMMENTS	S:						

FORMS\WELLSMPL.

ELL DE ONDITIO TO DE . DE	SIGNATION OF WI OP OF CA EPTH TO EPTH OF EIGHT OF	ELL HEAD/VAUL	N: R (initial): 12.46 ME/ MN (C-B):	S	SAMPLE NUMBER: <u></u>	/29/65 Xayasalng MW-2	
ASING	DIAMETE	R: 2" X	3*	 	4"	OTHER_	
V	'olume (V)	LL VOLUME: D of 2" well - 0.16 of 4" well - 0.65	3 gal/ft >	1.46 XC	0.(63)=20	gal	
DDOR_	No	´ s	HEEN NO	FLOATI	NG PRODUCT THICK	NESS ND	
PUMP T	TYPE:	POLY BA ELECTRI	ILER	STAINL	ESS BAILEROTHER		
PUMP [DEPTH:			T			
T	IME	GALLONS PURGED	NO. OF WELL VOLUMES	рH	TEMPERATURE (PORC)	CONDUCTIVITY (mmhos/cm or umhos/cm)	TURBIDITY (NTU or visual)
		2	/	6.57	20.3	570.0	Clear
	· · · · · · · · · · · · · · · · · · ·	4	7	6.70	20.1	.5.72.9	Clear
		6	3	6.70	201	573.7	Clear
						·	
				<u> </u>			,
							-
	······································						
						·	
REC	HARGE R	ATE (qualitative)	•			1	
		•	N BAILER	ACR	YLIC BAILER	DISPOSABLE	BAILER
		LLECTED:	PRESERVED VO PRESERVED LI 500 ml PLASTIC FILTERED	DA'S TERSBOTTLE WIT	UNPR UNPR H PRESERVATIVE F	ESERVED VOA'S ESERVED LITERS	

FORMS\WELLSMPL.

OJECT NAME: _	Marie			PROJECT DATE: 9	128/05	
OJECT NUMBE	R: <u>0234</u>	3 <u>05001.32</u> 1	<u> 202</u>	SAMPLER: FON	Xaijasalng	
ELL DESIGNATION	ON: <u>MW</u> -	4		SAMPLE NUMBER: _	MU)-4	***************************************
TOP OF CA DEPTH TO DEPTH OF HEIGHT OF	ELL HEAD/VAUL ASING ELEVATIC GROUNDWATEI WELL: 20 WATER COLUN VATER ELEVATIC	N: R (initial): (2 / MEA MN (C-B):	ASURED	·.	:	
ASING DIAMETE	ER: 2"X	3"		4"	OTHER_	
Volume (V,	ELL VOLUME: D) of 2" well - 0.16) of 4" well - 0.65	3 gai/π - `	11.12 X.C).[63]= 1.54	jal	
DOR NO	s	HEEN NO	FLOAT	ING PRODUCT THICK	NESS No	
'UMP TYPE:	POLY BA ELECTRI	ILER	STAINI	LESS BAILEROTHER		
PUMP DEPTH:						
TIME	GALLONS PURGED	NO. OF WELL VOLUMES	рH	TEMPERATURE (°F OR °C)	CONDUCTIVITY (mmhos/cm or amhos/cm	TURBIDITY (NTU or (Isual)
	1.5		7.5	21,9	.513.6	Clear
	3,0	2		Dewater	10201gn	Words -
	4.5	.3			. 0.	
	,					·
	, i.				<u>}</u>	
				·		
				·		
	IATE (qualitative)					
SAMPLER TY	PE: TEFLC	N BAILER	ACF	RYLIC BAILER	DISPOSABLE	BAILER
SAMPLES CO	LLECTED:	PRESERVED VC	A'S	UNPR UNPR	ESERVED VOA'S ESERVED LITERS	
	•	500 ml PLASTIC FILTERED	BOTTLE WIT	TH PRESERVATIVE FO	OR METALS: UNFILTERED	
		OTHER				
COMMENTS:						

LL DESIGNATI	R: <u>0234</u> On: <u>µw</u> .		002	PROJECT DATE: 9 SAMPLER: 900 SAMPLE NUMBER: 9		7
DEPTH TO DEPTH OF HEIGHT OI	ASING ELEVATION GROUNDWATE WELL: 20 SWATER COLUITATER ELEVATION	R (initial): ((-50° ME/ MN (C-B):	ASURED			
SING DIAMET	ER: 2" X	3"_		-4*	OTHER	·
Volume (V Volume (V	ELL VOLUME: D) of 2" well - 0.16) of 4" well - 0.65	3 gal/ft	11.58)(1	0.163)=1.4	gal	
$_{\text{DOR}}$ $\mathcal{N}\emptyset$		SHEEN NO	FLOAT	ING PRODUCT THICK	NESS <i>NO</i>	"
JMP TYPE:	POLY BA ELECTRI	ILER	STAINL	ESS BAILEROTHER		
UMP DEPTH:			I I			
TIME	GALLONS PURGED	NO. OF WELL VOLUMES	pH	TEMPERATURE (°F OR °C)	CONDUCTIVITY (mmhos/cm or amhos/cm	TURBIDITY (NTU or Visual)
	1,4	(7.5	21.3	513.0	Clear
	2.8	2	6.91	20.8	535.0	clear
,	4.2	3	6.80	20.5	530.0	clear
	'		_			
•						
····						
			·			
1				·		
RECHARGE R	ATE (qualitative):					•
SAMPLER TY	PE: TEFLO	N BAILER	ACF	RYLIC BAILER	DISPOSABLE	BAILER
SAMPLES CO	LLECTED:		ERSBOTTLE WIT	UNPRI H PRESERVATIVE FO		
		→ 111()1				

WINZLER & KELLY CONSULTING ENGINEERS

DJECT NAME: DJECT NUMBE LL DESIGNATI	Maric R: 0234 ON: MW:	3.05001.32 - 6	002	PROJECT DATE: 9 SAMPLER: 000 SAMPLE NUMBER: 2	/2 9 /05 Xayasalno Mw-6	7
TOP OF CA DEPTH TO DEPTH OF HEIGHT O	VELL HEAD/VAUL ASING ELEVATIO GROUNDWATE WELL: 20 F WATER COLUI VATER ELEVATION	ON: R (initial): 10.60 ME/ MN (C-B):	ASURED	·	· .	
SING DIAMET	ER: 2"	3*		4"	OTHER.	·
Volume (V	ELL VOLUME: D ') of 2" well - 0.16 ') of 4" well - 0.65	з дант	(0.66)	(0.163) = 1.5	•	
DOR_AZ) .	SHEEN NO	FLOAT	TING PRODUCT THICK	NESSNO	
UMP TYPE:		ILER	STAIN	LESS BAILEROTHER		
UMP DEPTH:						
TIME	GALLONS PURGED	NO. OF WELL VOLUMES	pH	TEMPERATURE (°F OR Ć	CONDUCTIVITY (mmhos/cm or rmhos/cm	TURBIDITY (NTU or Visual)
	1.5	j	71	21.7	5055	Chow
	3.0	2	7.0	269	520.0	clear
	4.5	3	6.7	21.6	525.0	clar
	1			J .		
		-				
	, ' #		1			
	J.					
	jes .					
	ATE (qualitative):			,		
SAMPLER TY	PE: TEFLO			RYLIC BAILER		
SAMPLES CO	LLECTED:	PRESERVED VO	A'S	UNPR	ESERVED VOA'S	
		500 ml PLASTIC FILTERED	BOTTLE WI	TH PRESERVATIVE FO	ESERVED ETTERS DR METALS: UNFILTERED	
		OTHER				

Report Date: October 17, 2005

Laboratory Report

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa CA, 95401

Project Name: **Mani 0234305001.32002**

Lab Project: **5093013**

This 19 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Manh A. Valentini

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
5093013-01	MW-2	Gasoline		ND	50
Date Sampled:	09/29/05	Date Analyzed:	10/04/05	QC	Batch: B000174
Date Received:	09/30/05	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
5093013-02	MW-6	Gasoline		ND	50
Date Sampled:	09/29/05	Date Analyzed:	10/05/05	QC	Batch: B000174
Date Received:	09/30/05	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
5093013-03	MW-4	Gasoline		ND	50	_
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	10/05/05 EPA 8015	QC	Batch: B000174	

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
5093013-04	MW-5	Gasoline		200	50	_
Date Sampled:	09/29/05	Date Analyzed:	10/05/05	QC	Batch: B000174	
Date Received:	09/30/05	Method:	EPA 8015			

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
5093013-05	MW-1	Gasoline		280	50
Date Sampled:	09/29/05	Date Analyzed:	10/05/05	QC	Batch: B000174
Date Received:	09/30/05	Method:	EPA 8015		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compou	nd Name		Result (ug/L)	RDL (ug/L)
5093013-01	MW-2	Benzene			ND	1.0
		Toluene			ND	1.0
		Ethylben	zene		ND	1.0
		m,p-Xyle	ene		1.2	1.0
		o-Xylene			ND	1.0
		Tertiary 1	Tertiary Butyl Alcohol (TBA)		ND	25
		Methyl tert-Butyl Ether (MTBE)		ND	1.0	
		Di-isopro	Di-isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Ethyl ter			ND	1.0
		Tert-Am	yl Methyl Ether	(TAME)	ND	1.0
Surr	ogates	Result (ug/L)	% Recove	ery	Acceptance Rang	ge (%)
Dibromofluorome	ethane	19.2	96		70-130	
Toluene-d8		20.5	102		70-130	
4-Bromofluorober	nzene	18.9	94		70-130	
Date Sampled:	09/29/05		Date Analyzed:	10/03/05	Q	C Batch: B000166
Date Received:	09/30/05		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compou	Compound Name		Result (ug/L)	RDL (ug/L)
5093013-02	MW-6	Benzene	e		ND	1.0
		Toluene	;		ND	1.0
		Ethylbei	Ethylbenzene		ND	1.0
		m,p-Xyl	m,p-Xylene		ND	1.0
		o-Xylen	ie		ND	1.0
		Tertiary	Butyl Alcohol (7	TBA)	ND	25
		Methyl 1	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopr	Di-isopropyl Ether (DIPE)			1.0
		Ethyl ter	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Su	rrogates	Result (ug/L)	% Recove	ery _	Acceptance Range	(%)
Dibromofluoron	nethane	19.8	99		70-130	
Toluene-d8		20.8	104		70-130	
4-Bromofluorob	enzene	19.2	96		70-130	
Date Sampled:	09/29/05		Date Analyzed:	10/04/05	QC I	Batch: B000166
Date Received:	09/30/05		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compor	and Name		Result (ug/L)	RDL (ug/L)
5093013-03	MW-4	Benzene	e		ND	1.0
		Toluene	>		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylen	ie		ND	1.0
		Tertiary	Butyl Alcohol (7	TBA)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopi	ropyl Ether (DIPI	Ε)	ND	1.0
		Ethyl te	rt-Butyl Ether (E'	ГВЕ)	ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recove	ery _	Acceptance Range ((%)
Dibromofluorom	ethane	20.2	101		70-130	
Toluene-d8		20.6	103		70-130	
4-Bromofluorobe	enzene	18.6	93		70-130	
Date Sampled:	09/29/05		Date Analyzed:	10/04/05	QC E	Batch: B000166
Date Received:	09/30/05		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compou	Compound Name		Result (ug/L)	RDL (ug/L)
5093013-04	MW-5	Benzene	;		ND	1.0
		Toluene			ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	m,p-Xylene		1.5	1.0
		o-Xylen	e		ND	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl t	Methyl tert-Butyl Ether (MTBE) Di-isopropyl Ether (DIPE)			1.0
		Di-isopr				1.0
		Ethyl ter	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-Am	nyl Methyl Ether	(TAME)	ND	1.0
Su	rrogates	Result (ug/L)	% Recove	ery _	Acceptance Rai	nge (%)
Dibromofluorom	nethane	20.1	100		70-130	
Toluene-d8		20.5	102		70-130	
4-Bromofluorob	enzene	19.1	96		70-130	
Date Sampled:	09/29/05		Date Analyzed:	10/04/05	(QC Batch: B000166
Date Received:	09/30/05		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compou	and Name		Result (ug/L)	RDL (ug/L)
5093013-05	MW-1	Benzene	2		ND	1.0
		Toluene			ND	1.0
		Ethylber	nzene		10	1.0
		m,p-Xyl	ene		7.9	1.0
		o-Xylene			ND	1.0
		Tertiary	Tertiary Butyl Alcohol (TBA)		ND	25
		Methyl tert-Butyl Ether (MTBE)		ND	1.0	
		Di-isopropyl Ether (DIPE)		Ε)	ND	1.0
		Ethyl ter	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	nyl Methyl Ether ((TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recove	ery	Acceptance Range	(%)
Dibromofluorom	ethane	20.1	100	<u> </u>	70-130	
Toluene-d8		20.6	103		70-130	
4-Bromofluorobe	nzene	19.3	96		70-130	
Date Sampled:	09/29/05		Date Analyzed:	10/04/05	QC	Batch: B000166
Date Received:	09/30/05		Method:	EPA 8260B		

TPH Diesel in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
5093013-01	MW-2	Diesel		ND	50
Date Sampled:	09/29/05	Date Analyzed:	10/07/05	QC	Batch: B000175
Date Received:	09/30/05	Method:	EPA 8015M		

TPH Diesel in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
5093013-02	MW-6	Diesel		ND	50	_
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	10/07/05 EPA 8015M	QC	Batch: B000175	

TPH Diesel in Water

Lab# 5093013-03	Sample ID MW-4	Compound Name Diesel		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	10/07/05 EPA 8015M	QC I	Batch: B000175

TPH Diesel in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
5093013-04	MW-5	Diesel		ND	50	_
Date Sampled:	09/29/05	Date Analyzed:	10/07/05	QC	Batch: B000175	
Date Received:	09/30/05	Method:	EPA 8015M			

TPH Diesel in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
5093013-05	MW-1	Diesel		ND	50
Date Sampled:	09/29/05	Date Analyzed:	10/07/05	QC	Batch: B000175
Date Received:	09/30/05	Method:	EPA 8015M		

Nitrate as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)	_
5093013-01	MW-2	Nitrate as N		0.84	0.50	
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	Batch: B000159	
Date Received:	09/30/05	Method:	EPA 300.0			

Nitrate as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-02	MW-6	Nitrate as N	_	1.0	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Nitrate as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-03	MW-4	Nitrate as N		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Nitrate as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-04	MW-5	Nitrate as N		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QO	C Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Nitrate as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-05	MW-1	Nitrate as N		ND	0.50
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	09/30/05 EPA 300.0	QC I	Batch: B000159

Nitrite as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-01	MW-2	Nitrite as N		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	C Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Nitrite as Nitrogen in Water

Lab# 5093013-02	Sample ID MW-6	Compound Name Nitrite as N		Result (mg/L) ND	RDL (mg/L) 0.50	_
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	09/30/05 EPA 300.0	QC E	atch: B000159	

Nitrite as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-03	MW-4	Nitrite as N		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	Q	C Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Nitrite as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-04	MW-5	Nitrite as N		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Nitrite as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-05	MW-1	Nitrite as N		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	C Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Ammonia as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-01	MW-2	Ammonia as N		ND	0.2
Date Sampled:	09/29/05	Date Analyzed:	10/05/05	QC Batch: B000183	
Date Received:	09/30/05	Method:	EPA 350.3		

Ammonia as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-02	MW-6	Ammonia as N		ND	0.2
Date Sampled:	09/29/05	Date Analyzed:	10/05/05	QC	Batch: B000183
Date Received:	09/30/05	Method:	EPA 350.3		

Ammonia as Nitrogen in Water

Lab# 5093013-03	Sample ID MW-4	Compound Name Ammonia as N		Result (mg/L) ND	RDL (mg/L) 0.2
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	10/05/05 EPA 350.3	QC	Batch: B000183

Ammonia as Nitrogen in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)	
5093013-04	MW-5	Ammonia as N		ND	0.2	_
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	10/05/05 EPA 350.3	Q	C Batch: B000183	

Ammonia as Nitrogen in Water

Lab# 5093013-05	Sample ID MW-1	Compound Name Ammonia as N		Result (mg/L) ND	RDL (mg/L)	_
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	10/05/05 EPA 350.3		Batch: B000183	

Lab Project#: 5093013

Phosphate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-01	MW-2	Phosphate		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Phosphate in Water

Lab# 5093013-02	Sample ID MW-6	Compound Name Phosphate		Result (mg/L) ND	RDL (mg/L) 0.50
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	09/30/05 EPA 300.0	QC I	Batch: B000159

Phosphate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
5093013-03	MW-4	Phosphate		ND	0.50
Date Sampled:	09/29/05	Date Analyzed:	09/30/05	QC	C Batch: B000159
Date Received:	09/30/05	Method:	EPA 300.0		

Phosphate in Water

Lab# 5093013-04	Sample ID MW-5	Compound Name Phosphate		Result (mg/L) ND	RDL (mg/L)
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	09/30/05 EPA 300.0	QC E	eatch: B000159

Lab Project#: 5093013

Phosphate in Water

Lab# 5093013-05	Sample ID MW-1	Compound Name Phosphate		Result (mg/L) ND	RDL (mg/L)
Date Sampled: Date Received:	09/29/05 09/30/05	Date Analyzed: Method:	09/30/05 EPA 300.0	QC	Batch: B000159

Page 12 of 19
Lab Project#: 5093013
CA Lab Accreditation #: 2303

Quality Assurance Report

TPH Gasoline in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000174 - EPA 5030 GC										
Blank (B000174-BLK1)		P.			& Analyz	zed: 10/04	1/05			
Gasoline	ND	50	ug/L							
Matrix Spike (B000174-MS1)		Source: 5093009-01 Pre		Prepared	& Analyz	ed: 10/04	1/05			
Benzene	9.73	0.50	ug/L	10.0	ND	97	70-130			
Toluene	9.73	0.50	ug/L	10.0	ND	97	70-130			
Ethylbenzene	9.72	0.50	ug/L	10.0	ND	97	70-130			
Xylenes	29.2	1.5	ug/L	30.0	ND	97	70-130			
Matrix Spike Dup (B000174-MSD1)		Source: 5093009)-01	Prepared	& Analyz	ed: 10/04	1/05			
Benzene	9.56	0.50	ug/L	10.0	ND	96	70-130	1	20	
Toluene	9.70	0.50	ug/L	10.0	ND	97	70-130	0	20	
Ethylbenzene	9.68	0.50	ug/L	10.0	ND	97	70-130	0	20	
Xylenes	29.1	1.5	ug/L	30.0	ND	97	70-130	0	20	

Volatile Hydrocarbons by GC/MS in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000166 - EPA 5030 GC/MS										
Blank (B000166-BLK1)				Prepared	& Analyz	zed: 10/03	3/05			
Benzene	ND	1.0	ug/L							
Γoluene	ND	1.0	ug/L							
Ethylbenzene	ND	1.0	ug/L							
m,p-Xylene	ND	1.0	ug/L							
o-Xylene	ND	1.0	ug/L							
Tertiary Butyl Alcohol (TBA)	ND	25	ug/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	ug/L							
Di-isopropyl Ether (DIPE)	ND	1.0	ug/L							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	ug/L							
Tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/L							
Surrogate: Dibromofluoromethane	17.6		ug/L	20.0		88	70-130			
Surrogate: Toluene-d8	20.8		ug/L	20.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	20.9		ug/L	20.0		104	70-130			
Matrix Spike (B000166-MS1)	So	ource: 5093013	3-01	Prepared	& Analyz	zed: 10/03	3/05			
1,1-Dichloroethene (1,1-DCE)	21.7	1.0	ug/L	25.0	ND	87	70-130			
Benzene	22.6	1.0	ug/L	25.0	ND	90	70-130			
Trichloroethene (TCE)	21.8	1.0	ug/L	25.0	ND	87	70-130			
Toluene	23.6	1.0	ug/L	25.0	ND	94	70-130			
Chlorobenzene	22.6	1.0	ug/L	25.0	ND	90	70-130			
Surrogate: Dibromofluoromethane	18.7		ug/L	20.0		94	70-130			
Surrogate: Toluene-d8	20.9		ug/L	20.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	19.2		ug/L	20.0		96	70-130			
Matrix Spike Dup (B000166-MSD1)	Se	ource: 5093013	3-01		& Analyz		3/05			
1,1-Dichloroethene (1,1-DCE)	22.1	1.0	ug/L	25.0	ND	88	70-130	1	20	
Benzene	22.8	1.0	ug/L	25.0	ND	91	70-130	1	20	
Trichloroethene (TCE)	21.9	1.0	ug/L	25.0	ND	88	70-130	1	20	
Гoluene	23.2	1.0	ug/L	25.0	ND	93	70-130	1	20	
Chlorobenzene	23.4	1.0	ug/L	25.0	ND	94	70-130	4	20	
Surrogate: Dibromofluoromethane	18.6		ug/L	20.0		93	70-130			
Surrogate: Toluene-d8	20.4		ug/L	20.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	19.0		ug/L	20.0		95	70-130			

TPH Diesel in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000175 - EPA 3510C										
Blank (B000175-BLK1)				Prepared:	10/04/05	Analyze	ed: 10/07/0)5		
Diesel	ND	50	ug/L							
LCS (B000175-BS1)				Prepared:	10/04/05	Analyze	ed: 10/07/0)5		
Diesel	2300	50	ug/L	2740		84	65-135			
LCS Dup (B000175-BSD1)				Prepared:	10/04/05	Analyze	ed: 10/07/0)5		
Diesel	2270	50	ug/L	2740		83	65-135	1	20	

Page 15 of 19
Lab Project#: 5093013
CA Lab Accreditation #: 2303

Nitrate as Nitrogen in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000159 - NO PREP										
Blank (B000159-BLK1)				Prepared	& Analyz	zed: 10/07	7/05			
Nitrate as N	ND	0.10	mg/L							
LCS (B000159-BS1)				Prepared	& Analyz	zed: 10/07	7/05			
Nitrate as N	0.458	0.10	mg/L	0.452	-	101	85-115			
LCS Dup (B000159-BSD1)				Prepared	& Analyz	zed: 10/07	7/05			
Nitrate as N	0.465	0.10	mg/L	0.452		103	85-115	2	20	

Nitrite as Nitrogen in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000159 - NO PREP										
Blank (B000159-BLK1)				Prepared	& Analyz	zed: 10/07	7/05			
Nitrite as N	ND	0.10	mg/L							
LCS (B000159-BS1)				Prepared	& Analyz	zed: 10/07	7/05			
Nitrite as N	0.167	0.10	mg/L	0.152	-	110	85-115			
LCS Dup (B000159-BSD1)				Prepared	& Analyz	zed: 10/07	7/05			
Nitrite as N	0.167	0.10	mg/L	0.152		110	85-115	0	20	

Page 17 of 19
Lab Project#: 5093013
CA Lab Accreditation #: 2303

Phosphate in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Rotch R000150 - NO PDFP										

Blank (B000159-BLK1)				Prepared & Analyzed: 10/07/05
Phosphate	ND	0.20	mg/L	

Page 18 of 19 Lab Project#: 5093013 CA Lab Accreditation #: 2303

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

Page 19 of 19
Lab Project#: 5093013
CA Lab Accreditation #: 2303

STODY 50930/3	0234305001.32002	GEOTRACKER EDF: X Y	GLOBAL ID: 10607 100 125	COOLER TEMPERATURE	BINETCE °C	202	PAGE / OF	
CHAIN OF CUSTODY LAB PROJECT NUMBER: SO930/3 WINZIER & KELLY PROJECT NAME: 1/200	WINZLER & KELLY PROJECT NUMBER: 0234305001. 32002	TURNAROUND TIME (check one)		MOBILE LAB	SAME DAY 24 HOURS	*	5 DAYS NORMAL X	ANALYSIS
Analytical Sciences P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093	CLIENT INFORMATION	COMPANY NAME: WINZLER & KELLY CONSULTING ENGINEERS	ADDRESS: 495 TESCONI CIRCLE, SUITE 9	SANTA ROSA, CA 95401-4696	CONTACT: Regults: Soura ; Chestians: For	PHONE#: (707) 523-1010	FAX #: (707) 527-8679	

_						_			-		_					_				_
	LAB SAMPLE #	0	20	63	40	50												1000	1 712	IME
	COMMENTS	5093613	50930/3-	5093013-	5093013-	5093013 -													30/02	DATE
†	HitiN	X	_		-	>		\dagger	1			T	1				,		1	
	Shortily	X	_		-	>	T	1	1	,		†	1							
6	undany refer	X	-	F		>						1	1							
P	Ammoning Lines	X				7														
	PESTICIDES / PCB'S																	TORY:	M	
	TRPH / TOG SM 5520F / EPA 418.1M																	BORA		
TANK TO SEE	SEMI-VOLATILE HYDROCARBONS FPA 8270														.			RECEIVED BY ABORATORY:	1	
	CHLORINATED SOLVENTS EPA 8010 / EPA 82608														$\ $			CFIVE	D	SIGNATURE
	OXYGENATED FUEL ADDITIVES EPA 8260M															ES		8		Sig
	BTEX & OXYGENATES	×	-	F	T	7	1				1	1				TUR				
	VOLATILE HYDROCARBONS FPA 82608 (FULL LIST)			T	1	T		1			T					SIGNATURES			e	
	HPH DIESEL / MS+045M	4	-	+	+	+	7		-		T				1				2.56	TWE
	TPH/GAS/896X EFA 8015M/8698	×	4 -	+	+	-	>				+						pro		-	
	PRESV. YES/NO	3	2 -	+	+	-	>							. ,			Pro Vayage	-	Ų	
	CONT.		_	- 7	+6	+ 1	+			-							7		1901	
	MATRIX	3	-	+	+	1	•												6	-
	TIME	2000	187	3:2	17:00	13:08	13:19										SAMPLED BY:			
	DATE	Jan Winner	Soliah	+	1	+	>	•									S		1	1
	CLIENT SAMPLE I.D.	T	1	CW/6	MW-4	MWS	1 3 Y											- A dansmom and	dolared DI.	Action 1
	ITEM	1	-	2	6	4	ıc.	9	,	-	-	6	5	:					2	1

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

Well Measurement File, 3rd Qtr 2005, Mani

Site

Submittal Date/Time: 10/24/2005 3:49:34 PM

Confirmation

7772979557 Number:

Back to Main Menu

Logged in as WINZLER (AUTH_RP)

CONTACT SITE ADMINISTRATOR.